
ar
X

iv
:h

ep
-t

h/
04

12
07

9 
v1

   
7 

D
ec

 2
00

4

LBNL-56687

UCB-PTH-04/35

hep-th/0412079

December 7, 2004

R-parity from the heterotic string∗

Mary K. Gaillard†

Department of Physics, University of California and

Theoretical Physics Group, Bldg. 50A5104, Lawrence Berkeley National Laboratory

Berkeley, CA 94720 USA

Abstract

In T-duality invariant effective supergravity with gaugino condensation as the mech-

anism for supersymmetry breaking, there is a residual discrete symmetry that could

play the role of R-parity in supersymmetric extensions of the Standard Model.
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In the context of the weakly interacting heterotic string, T-duality invariant effective

supergravity Lagrangians have been constructed [1, 2] for supersymmetry breaking by con-

densation in a hidden sector. The T-duality of these models assures1 that the T-moduli

are stabilized at self-dual points with vanishing vacuum values (vev’s) for their auxiliary

fields. Thus supersymmetry breaking is dilaton dominated, thereby avoiding2 a potentially

dangerous source of flavor changing neutral currents (FCNC). Another consequence of this

result is that there is a residual discrete symmetry that might play the role of R-parity in

the minimal supersymmetric extension (MSSM) of the Standard Model (SM).

The heterotic string is perturbatively invariant [5] under transformations on the T-

moduli, that, in the class of models considered here, take the form3

T I → aIT I − ibI

icIT I + dI
,

ΦA → e−
∑

I
qA
I

F I

ΦA,

aIdI − bIcI = 1, aI , bI , cI , dI ∈ Z ∀ I = 1, 2, 3,

F I = ln
(

icIT I + dI
)

, (1)

and under which the Kähler potential and superpotential transform as

K → K + F + F̄ , W → e−FW, F =
∑

I

F I . (2)

The self-dual vacua Tsd, namely

〈tI〉 = 1 or eiπ/6, (3)

are invariant under (1) with

bI = −cI = ±1, aI = dI = 0 or

{

aI = bI , dI = 0

dI = cI , aI = 0
, F I = ni

π

2
or ni

π

3
. (4)

So for three moduli we have a symmetry under GR = Zm
2 ⊗ Zm′

3 , m + m′ = 3. The gaugino

condensates u [and matter condensates 〈eKW (Π)〉 ∝ u; see [1]] that get vev’s break this

further to a subgroup with

iImF = F = 2niπ, (5)

1This result is assured only if the constraint on the gaugino condensate that follows from the Yang-Mills

Bianchi identity is imposed.
2The effects of quadratically divergent loop corrections [3] will be examined elsewhere [4].
3We neglect mixing [6] among twisted sector fields of the same modular weights qA

I
with mixing parameters

that depend on the integers aI , bI , cI , dI .
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under which λL → e−
i
2
ImF λL = ±λL; we would identify the case with a minus sign with

R-parity. This subgroup also leaves invariant the soft supersymmetry-breaking terms in the

observable sector, if no other field gets a vev that breaks it. For example if the µ-term comes

from a superpotential term HuHdΦ, with the vev 〈φ = Φ|〉 6= 0 generated at the TeV scale,

the symmetry could be broken further to a subgroup R ∈ GR such that RΦ = Φ. On the

other hand if the µ-term comes from a Kähler potential term generated by invariant vev’s

above the scale where the moduli are fixed there would be no further breaking until the

Higgs get vev’s; with the residual R-parity satisfying RHu,d = Hu,d.

Given the transformation property

η(iT I) → eiδI e
1

2
F (T I)η(iT I), F (T I) = F I , δI = δI(a

I , bI , cI , dI), (6)

of the Dedekin η-function, superpotential terms of the form

W =
∏

A

ΦA
∏

I

η(iT I)2(
∑

A
qA
I
−1), (7)

would be covariant under (1) if the moduli independent phases [7] satisfied δI = 2nIiπ.

However it is easy to see that this is not the case for the transformations that leave fixed

the self-dual points Tsd:

η(iTsd) → η(iTsd) 6= e
1

2
F (Tsd)η(iTsd). (8)

It follows from T-duality that this phase can be reabsorbed [8] into the transformation

properties of the twisted sector fields. Consider for example a Z3 orbifold with twisted

sector fields TA and Y AI with modular weights

qA
I =

(

2

3
,
2

3
,
2

3

)

,
(

qAJ
I

)

Y
=

(

2

3
,
2

3
,
2

3

)

+ δJ
I . (9)

The untwisted sector fields UAI have modular weights

(

qAJ
I

)

U
= δJ

I . (10)

Then since allowed superpotential couplings are of the form [10] T 3pU q, invariance under

(8), subject to (5), requires that
∏

ΦA in (7) gets, in addition to the phases implicit in (1),

an overall phase factor δsd that satisfies

iδsd =
∑

I

(2p + nI)F (T I
sd) =

∑

I

nIF (T I
sd) + 4ikπ, k ∈ Z (11)
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where nI is the number of UAI and TAI factors in
∏

ΦA. More generally, T-duality implies

that the allowed terms in the superpotential must be such that there is a choice of phases

δA that makes it covariant if the transformation of ΦA in (1) is modified to read

ΦA → eiδA−
∑

I
qA
I

F I

ΦA. (12)

For example in [8] trilinear terms W ∼ U1U2U3, (T )3, where T = TA were considered; all

such terms would be covariant provided δU = 0, δT = −2
3
δ = −2

3

∑

I δI , . If we further

impose δY J

= −2
3
δ − 4δI , then the monomials

U1U2U3, T 3Πp, UIY
IT 2Πp, UIY

IUJY JTΠp, UIY
IUJY JUKY KΠp, (13)

where Π = Y 1Y 2Y 3, can be used to construct covariant superpotential terms Wα, by mul-

tiplying them by powers of ηI = η(iT I) such that the overall monomials Wα are modular

covariant with modular weights qα
I = 1. Further operators can be constructed by multiplying

these by invariant operators; for example Πη6, η =
∏

I ηI is invariant. In addition, invariant

operators of the form

η2m
m
∏

i=1

Wαi
, 2mδ = 2πn, (14)

can be constructed since δ/π is a rational number.4 These couplings are consistent with

the selection rules [10]. They are further restricted by additional selection rules and gauge

invariance. The invariant operators (14) can also be used to construct terms in the Kähler

potential. For the subgroup defined by (4) and (5), iδ = −1
2
F = −inπ, the superpotential is

invariant, as are the monomials in (13), so any product of them in could appear in the effective

superpotential or Kähler potential, e.g., through quantum corrections and/or integrating

out massive fields, in the effective theory below the scale where the T-moduli are fixed

and supersymmetry is broken, with possibly additional vev’s that are invariant under GR

generated at that scale.

Superpotential terms of dimension three will be generated from higher order terms when

some fields acquire vev’s. In models with an anomalous U(1)X , there is a Green-Schwarz

counterterm in the form of a D-term [11] that leads to the breaking of a number m of U(1)

gauge factors when n ≥ m fields ΦA acquire vev’s. T-duality remains unbroken [12], but

the modular weights are modified by going to unitary gauge in a way that keeps modular

invariance manifest. For example in minimal models with n = m:

ΦM → Φ′M , qM
I → q′MI = qM

I −
∑

Aa

qM
a Qa

AqA
I ,

∑

A

Qa
AqA

b = δa
b ,

∑

a

Qa
AqB

a = δB
A .

(15)
4The group (1) of duality transformations on T I is generated [9] by T I → 1/T I with δ(1, 1, 0, 1) = π/4,

and T I → T I − i with δ(0, 1,−1, 0) = π/12.
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This has the effect of making the eaten chiral supermultiplets modular invariant in the

superhiggs mechanism. Then for a term in the superpotential (7) with some
〈

ΦA
〉

6= 0:

W =
∏

M

ΦM
∏

B

〈

ΦA
〉

∏

I

η(iT I)2(
∑

M
qM
I

+
∑

B
qA
I
−1)

=
∏

M

Φ′M
∏

B

〈

ΦA
〉

∏

I

η(iT I)2(
∑

M
q′M
I

−1), (16)

because W is also U(1)a invariant:
∑

M qM
a +

∑

A qA
a = 0. In order to make T-duality fully

manifest below the U(1)-breaking scale, we have to redefine the transformation (12) by

including a global U(1)a transformation such that ΦA is fully invariant, and

Φ′M → eiδ′M−
∑

I
q′M
I

F I

ΦM , δ′M = δM −
∑

Aa

qM
a Qa

AδA. (17)

A priori we expect that 〈ΦA〉 ∼ .1, so that couplings arising from high dimension op-

erators in the superpotential are suppressed.5 We would like to have one large coupling

(Q3, T
c, Hu) which should correspond to one of the dimension three operators in (13). Most

models studied [14, 15] have quark doublets in the untwisted sector. In this case we should

take T c and Hu in the untwisted sector as well, and require6 qQ3

a + qT c

a + qHu

= 0. That is,

if we identify the QI generation index with the moduli index, we can have, e.g., T c = T c
2 ,

Hu = Hu
1 . Then to suppress the Q2C

cHu and Q2U
cHu couplings we require Cc, U c /∈ U3,

so one of these must be in the untwisted sector T . Since these generally have different

U(1) charges from the untwisted sector fields, to avoid a possible D-term induced flavor-

dependence of the squark masses in the first two generations, we also take both U c and Cc

in T .

As an example (that turns out not to produce the desired R-parity) consider the FIQS

model [15], with the φA vacuum studied in [2]. Then Dc, Sc, Bc, Hu ∈ T . To generate all

the known Yukawa’s (QT 2, QHuT ) it follows from (13) that at least three Y I with different

indices I have to have vev’s. If all the vev’s are generated by D-term breaking, we have to

choose the three-fold version [2] of the “minimal” FIQS model with 〈Y 1,2,3
1 〉 6= 0. Defining

ζM
A =

∑

Qa
AqM

a , ζM =
∑

A

ζM
A , (18)

we have ζM
Y1

= 2
3
ζM −

√

3
2
qM
X . Then after the redefinitions (15) and (17) with iδI = −1

2
F I ,

we have

T ′M → e

[

1

3
(ζM−1)+

√
3

2
qM
X

]

F
T ′M . (19)

5The factors multiplying these terms can in fact be rather large [13].
6This requirement in satisfied in the FIQS model [15].
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For all the possible MSSM candidates the TM have
√

3
2
qM
X = 1

3
nM and we just get

T ′M → e
1

3
(ζM−1+nM )F T ′M . (20)

Then, using (5), trilinear terms T 3 with fixed nM satisfy

3
∏

i=1

T ′Mi → e
1

3

∑

3

j=1
ζMj F

∏

i

T ′Mi . (21)

Taking the TMi in (21) to be the FIQS supermultiplets U c = u2 ∈ T and any two of

Dc, Sc, Bc = d1,2 ∈ T, we have nMi = −1,
∑

j ζMj = 0, so we cannot forbid baryon number

violating couplings. We can nevertheless ask if we get any interesting restrictions. It turns

out that for SM gauge invariant trilinear couplings we get
∑

j ζMj 6=ℓ5 = n,
∑

j ζMj 6=ℓ5+ζℓ5 = n
2
,

and after imposing (5), aside from couplings involving ℓ5, everything drops out except the

original T-duality transformation on the untwisted fields; if for an operator O, O → η(O)O,

we have

η(GiGjℓk 6=5) = 1, η(GiGjℓ5) = e
n
3
iπ, η(QIdiGj) = e−F I

,

η(QIu
1
JG̃1

K) = e−F I−F J−F K

, η(QIu2G̃k 6=1) = e−F I

,

η(QIu
1
JG̃k 6=1) = η(QIu2G̃

1
J) = e−F I−F J

, (22)

Thus L2Ec is allowed unless Ec = ℓ5, in which case LHdE
c is also forbidden, unless the

symmetry is broken to n = 6p, in which case both are allowed. In order to have at least one

QIHdD
c-type coupling for each QI we need F I = 2inπ ∀ I. Then all couplings involving

the QI are allowed, including QILDc, etc. We can also look at candidate µ-term couplings

HuHd = G̃iGj ; these have ζ G̃i + ζGj = m, and

η(GiG̃
1
I) = e

m
3

iπ+F I

, η(GiG̃j 6=1) = e
2m
3

iπ, (23)

so (5) has to be broken to a smaller subgroup when the µ-term is generated.

Apart from the fact that the FIQS model doesn’t give the correct constraints, it is still

interesting to see if one can get any unbroken symmetry after the Higgs particles acquire

vev’s. In this model the individual η’s are of the form e2niπ m
33 , except for ℓ5 where m

33
→ 2m+1

66
,

so the individual vev’s of Hu,d break the symmetry down to a subgroup with n = 33p in (5).

If this is the only symmetry left the only constraint on the couplings in (22) is to forbid

GiGjℓ5. However, we can once again redefine the transformations such that one Higgs is

invariant and the other has the phase factor in (23), and therefore both Higgs are invariant
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under the subgroup left unbroken by the µ-term. Here we use the fact that the couplings are

invariant under electroweak hypercharge Y , and redefine the transformation properties by

ηM → ηMη−2Y M

Hu
. (24)

Then Hu with Y Hu = 1
2

is invariant and the couplings that were allowed/forbidden under

the group left unbroken by the µ-term (23) remain so.

Returning to the viability of the FIQS model, not all the vev’s have to be generated

at the U(1) breaking scale. For example after condensation soft masses and A-terms are

generated, but the Lagrangian is GR invariant. If just one more field gets a vev, one can do

another redefinition as in (17) such that this field is GR invariant, and the net effect must be

the same. If several fields get vev’s and there is a residual subgroup R that survives, it must

be possible to redefine all of them to be invariant, as above, by exploiting surviving gauge

symmetries at that scale, so in this model it appears that generating the observed couplings

does not admit an R-symmetry that could forbid the unwanted ones.

Now we turn to a more general analysis, assuming the same assignments as before for

the MSSM fields, but with different U(1) charges. Then the analogue of (19) is

U ′M
J → e

1

3
ζMF−

∑

I
ζMJ
I

F I−F J

U ′M
J = ηMJU ′M

J ,

T ′M → e
1

3
(ζM−1)F−

∑

I
ζM
I

F I

T ′M = ηMT ′M , (25)

where

ζM
I =

∑

A

ζM
Y A

I
, ζQ

A + ζT c

A + ζHu

A = 0, ηQ3
ηT cηHu = 1. (26)

We also require ηHu
ηHd

= 1. If D̃c = Dc, Sc, Bc all have the same U(1) charges, then

ηDc = ηSc = ηBc . Then in order to have at least one coupling QID̃
cHd for each value of I,

we require ηQI
= ηQ independent of I, and requiring at least one coupling QIC

cHu implies

ηUc = ηCc = ηT c if Ũ c = U c, Cc have the same U(1) charges. Then all couplings of these two

types are allowed. Similarly if we assume the lepton doublets L and singlets Ec have (two sets

of) degenerate U(1) charges qL
a , qEc

a , they also have degenerate R-parities: ηL, ηEc . To forbid

L2Ec, LQD̃c and LHu we require ηL 6= ηHd
, and to forbid D̃2Ũ c, we require ηUc 6= (ηDc)−2

or

η2
D̃cηŨc = η−3

Q ηHu
6= 1. (27)

If, as in the FIQS model, the QI all have the same U(1) charges, the constraint that they have

the same R-charge implies that F I −F J = 2niπ. Then since we also require
∑

I F I = 2miπ,

it is easy to check that F I = 2nIiπ, giving

ηMJ = e2iπ
∑

I
nI(1

3
ζM−ζM

I ), ηM = e2iπ
∑

I
nI[ 1

3
(ζM−1)−ζM

I ]. (28)
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We can find an R-parity provided there is some compactification for which we can identify

the particles of the SM in such a way that the above constraints are satisfied. With the

above choices [QI , T
c, Hu ∈ U ; Ũ c, D̃c, L, Ec, Hd ∈ T and degenerate U(1) charges for fixed

flavor in each sector], they take the form

ηQ = e2iπβη−2
Hd

, ηŨc = ηT c = e−2iπβη3
Hd

, ηD̃c = e−2iπβηHd
, β 6= n

3
ηHu

= η−1
Hd

, ηL = e2iπαηHd
, ηEc = e−2iπαη−2

Hd
, 0 < α, β < 1. (29)

When the electroweak symmetry is broken, we redefine R-parity as in (24) so that ηHd
= 1.

Other scenarios can be considered. For example a Q3T
cHu coupling is allowed if these

are all in the twisted sector T , their U(1) charges sum to zero and there is no Π factor in

(13) required by a further string symmetry. In this case it would be possible to have all

quarks of the same flavor having the same U(1) charge. It is in fact not necessary to have

identical U(1) charges to assure equal masses for squarks and sleptons of the same flavor,

which is what is actually needed to avoid unwanted FCNC; scalars φM with the same value

of ζM have the same masses, but could have different values7 of ζM
I . The viability of these

scenarios in the context of gaugino condensation favors vanishing or very small values of

ζM for SM particles, so the values of the ζM
I could be the governing factors in determining

R-parity.

To what extent have we achieved the conventional definition of R-parity? With appropri-

ate choices of phases in (29) we achieve the elimination of baryon and lepton number violating

couplings8 of dimension two or three in the superpotential. Higher dimension operators can

generate B and L violation, as is the case with the conventional definition of R-parity. In

the latter case the R-allowed dimension-four operator Ũ cŨ cD̃cEc in the superpotential leads

to dimension-five operators in the effective Lagrangian that may be problematic [16] even

if these couplings are Planck- or string-scale suppressed, given the current bounds on the

proton decay lifetime. This problem easily evaded in the current context provided

3β + α 6= n. (30)

The stability of the lightest neutralino is assured at the same level as proton stability since

its decay products would have to include an odd number of SM fermions and hence violate

B and/or L.

7In the FIQS model considered above, the MSSM candidates with the same flavor that are degenerate in

ζM are also degenerate in ζM

I
.

8Fast proton decay is avoided by eliminating either one of these, but the Ũ c(D̃c)2 coupling by itself would

induce neutron-anti-neutron oscillations.
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A more comprehensive examination of Z3 orbifold models in this context will be presented

elsewhere [17].
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